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Abstract

Orthogonal functions. and in particular. Walsh functions, have
been advocated in the literature as a method of approximating the
solutions of singular systems £1' = Fr + Bu of index k. This paper
gives the first analvsis of the accuracy of these approximations. For
Walsh functions. diverz=n<e s shown for k > 3 and convergence for
k = 0,1. The index 1w c1s» 15 also analyzed.

*Research supported in part Py rie Air Foree Office of Scientific Research under Grant
AFOSR 87-0051 and the Nat. 1. ~--uo» Foundation under Grant DMS-8613093
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RS 1 Introduction
nh
R The singular control system
N EZ(t) = Fz(t) + Bu(t), z(to) = z (1)
N
?:,. with E, F, B constant matrices and E singular, has been extensively studied
' [2],[3],[8]. In [11] it was suggested that (1) could be solved using orthogonal
. functions. This was discussed further in [4],[10],[9]. These papers con-
~',' sidered Walsh functions because of their simple structure and the ease of
\ \f, approximating coefficients. While these papers showed that one could solve
’ n the resulting algebraic equations for the coefficients of an approximation,
5 none of them actually examined how good these approximations were. In
%, this paper we shall give the first discussion of the convergence of the Walsh
ﬁt; approximations for singular systems. It will be shown that in many cases
b the approximations actually diverge from the true solutions as more terms
o are used in the approximation.
+
i 2 Orthogonal Approximations
N
'f.: Suppose that E, F' are n X n and that (1) is solvable. That is, AE + F is
: a regular pencil so that det(AE + F) # 0 and (1) has a solution for every
o sufficiently smooth u and for consistent zo [2]. We considerreal E, F, B, z,u
e but the complex case is similar.
"_-.': To simplify notation,. In order to explain our analysis we need to in-
"j troduce some notation and review some terminology from the theory of
[ orthogonal functions. Let £? be the space of all square integrable lebesque
‘}3 measurable functions on [0, 1]. £? is a Hilbert space with inner product,

A 1 ———d————J
»
5 < fi9>= [ f®g(tat @ Y

.|
and associated norm ! 3
N (/1 zdt)ln 3) ]
o = t el I
2 1= ([ 10 (
oy A vector valued function will be said to be in £? if each coordinate is. Let , ="
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{¥i(t)}2, be an orthonormal basis for £2. Then if f € £?, we have

ft) =3 fi(®) (4)

=1

where the f; are the fourier coefficients of f with respect to the basis {#;}.
The series (4) converges in the norm (3). For a given orthonormal basis
{i}, let o = [th,...,¥m]" and define the projection onto the span of

{n,...,¥m} by -
=3 fi

i=1

Let the coefficients of this projection be given by the operator

c""(f):-[fly---)fm]

For a vecior @ = [ay, ..., am], define

 Fm(a) =3 it

=1

If f is ve:tor valued, then C(f) is a matrix whose ij-th entry is the j-th
fourier cc :fficient of the i-th element of f. Similarly, the a; in the definition
of Cn can be vectors. Note that Pn(f) = Cn(f)¥m. Finally, define the

m X m matrix P, by
t
Cn ( /0 \Il,,.(s)ds) =P,

Now we can consider the singular system (1). Fix m and take X =
Cn(2),U = Cn(u),Q = Cn(z0) where zq is considered a constant function.
Integrating (1) gives

Ez(t) - E —F/' (s)ds B/‘ (s)d 5)
o= F | (s | uls)ds (
Using the approximations z = XV, ux UV, and 2o = QV¥ in (5) gives

EXV—-EQU = FX /O' W(s)ds — BU/Ot ¥(s)ds (6)
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where the m subscript has been dropped. Taking C,, of both sides of (6)
and letting P = P, yields the algebraic equation

EX-EQ=FXP-BUP )

In the method of orthogona.l functions, (7) is solved for X given E, F, P,U, B.

The most discussed orthonormal basis to date have been the Walsh func-
tions [5], [9],[10],{13). If m = 2, however, the span of the first m Walsh
functions is identical to the linear span of the m block-pulse functions
{é1,...,6m} where () is 1 if =l <t < L and 0 otherwise. The set
{#}, is orthogonal and can be normalized by multiplying by /m. Let
o = \/ﬁé. Notice that the ¢; are not an orthonormal basis for £2. Rather
for m = 27, the {¢i,...,#m } is an orthonormal basis for the span of the first
m Walsh functions. Thus we get approximations with the same error using
either set of m functions and the linear algebra problem (7) has the same
numerical conditioning in both cases. That (7) has a solution is shown in
[9]. We are interested in the accuracy of the approximation to the solution
r given by the solution X of (7).

Using the standard structure theory for matrix pencils [2],[8], we can
transform (1) by constant coordinate changes into

Z{ = C2’1+Bl‘u (8)
Nz; = 2+ Byu (9)

where N is nilpotent of index k. That is, N* = 0, N*=! # 0. Similarily, (7)
will decouple into two equations, one for the coefficients of z; and one for the
coefficients of z;. Let A = 1/m. It is known that the Walsh functions will
give an O(h) approximation for (8). We consider then only (9). Additional
coordinate changes on (9) will put NV into Jordan form and decouple (7)
so that the subsystems may be considered separately. Thus there is no
loss of generality in assuming that (1) is in the form of (9) where N is an

elementary Jordan block of index k. We now carefully consider the index
3 case.

Example 1. Consider (1) where

010 1 00
001}, F=I=(010

000

E=N=

o
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1 7
B=|1]|, zo=]| -1 . u=1+4t -3t - 2
1 1

This system has the solution
EA 1 + 2t + 3t? + Ge!
z=|az | =] 2A+3t2+4e -5
z3 32+ 2t —4t~1

The resulting equation (7) was solved using the numerically robust Bartels-
Stewart algorithm [1),[6],[7]. Table 1 gives the £? error, ||z — Fn(X)||, for
several values of m.

m T Z? Z3
4| 12.67 0.954 0.259
8| 24.79 0478 0.131

16 | 49.34 0.239 0.065

32| 98.57 0.119 0.032

64 | 197.09 0.059 0.016

Table 1. £? error for Example 1

From this table we observe what appears to be O(h) convergence in z; and
z3 and O(}) divergence in r,. The convergence in z, was surprising. We
had expected the error in approximating z, to be O(1). To understand the
convergence for the z; variable and to show that the observed behavior of
this example reflects the general case, we shall consider this example more
carefully. For the block pulse functions,

1 2 2
0 1 2
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and
1 -2 2 =+ £2
0 1 -2 * =«
15" = . . * *x 2
.. .1 =2
0 - - 0 1

Substituting the values of £, F, P, U, B,Q from Example 1 into (7) gives

1 - Tom i1 - Tim h -
Tyt - Tam | — | Zn 0 Tom EP
o ... 0 Ty ' Tim
Un < Uim h . g1 d2m
= U1 - Uim -2-P +{ ¢1 - ¢am (10)
U o Uim 0 --- 0

From the third row of (10) we have

"'[2‘31,---,173m] = (Uu,-n,ulm]

But the exact solution is z;3 = —u. Thus the algebraic variable z3 is ap-
proximated to the same accuracy as u was approximated which is O(h).
Now for z; we have

[321,-'-,1‘2m] = —[uu,---,ulm]

+([z31,- . Z3m] = [g315- - - @3m]) (%15)-l (11)

The actual solution is £, = 7/, — u = —u’ — u. Thus
B\
([z31,- - 23m] = [g31,- - -, 3m])) (-Z-P) (12)
must be an approximation for rj. To see why this is O(h) even though
the Euclidian operator norm of # P~! is O(35), let r be a function of t and

9(t) = G r(s)ds. Let G = C1y). R = Cn(r) with respect to the block pulse
functions. Then

Cm(9) = Cm (/0 r(s)ds | = (- (/O Pm(r)ds) +Cr </0'(1 - ’Pm)(r)ds)
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:S‘ or
f G=RP+¢€n
. and finally
g GP'=R+ e P!
. .
;',. The term €, P! is the error in using GP™! as an estimate for R. In our
“' example we have that » = z}, ¢ = 23 — z3(0) and G = [z31,...,T3m] —
' [¢31,-..,¢3m)- It is not clear that ||F,(exP7')|| is O(h). Suppose that
0 r has slowly varying slope. The interval [0, 1] can always be broken into
A subintervals on which this is true. Then a straightforward, but tedious
:' calculation, shows that e, looks like A%2M,, where 7, is a vector of
N ones and M is independent of m and hence ||Fn(7)]| = vm = O(h~V2).

(Actually the entries of ¢, are between two vectors in this form.) But
6n = wP~! is a vector of ones and minus ones. Thus

’ L~ xY ' 6
ERAAAARE & LAEEA RN

Fa o 30 B

(e P~ = B/ M o )| = 28 M F(0)] = 24

as was observed for z,. However, this error term gets multiplied again
by P! in the computation of the estimate for z; and §P~! looks like

(1,3,5,...] which are the normalized block pulse coefficients of a function
of norm O(;377). Thus for z; we have
| Fn(em P P = (| Fm(26%2 M 8P|

W,

» S 1 1
bhon = h1/2 - -\ = WM20(——) = ol

% IMAPFn (6P| = 2M O(hs/z) O(h)

- as observed.

oA

o . .

. 3 Discussion

"o

f'_'.' As noted earlier the example studied is typical of all systems of index & < 3.
o Also, any system index higher then 3 must contain a subsystem of index 3

. of the form of our example. Thus we can make the following conclusions
ﬁ- about the use of Walsh functions on singular systems.

§: 1. The orthogonal function method using Walsh functions will give an

: O(h) approximation for systems (1) of index zero or one.
‘l"
) 7

6
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2. The method will diverge for singular systems of index greater then
two.

3. For index two systems, we can expect O(h) convergence. However,
this depends on algebraic cancellation and can be expected to be
numerically sensitive. Also, convergence can be reduced by controls
u with rapidly changing derivatives.

The difficulty in using Walsh functions arises because of the integral
Y approximation. If our orthogonal basis had the property that

£ (1-1>m)(/0' \Ilm(s)ds) =0

then there would not be this difficulty. One example of such a basis is

e {cos z,sinz, cos 2z,sin 2z, ...} on [~7, 7] and m an even integer. However,

of . . . .

2 in this case the coefficients are much more difficult to compute.

7 Even if (1) is a system on which the method of orthogonal functions
' using Walsh functions may work, this method may not be the method of
® choice unless there is some particlar need or reason for using Walsh func-
:: tions. Large values of m must be used to obtain even modest accuracy.
~ There are several alternatives that can provide higher accuracy at substan-
i: tially less cost. Among these are computation of part of the matrix pencil

- [15),[7], backward differentiation formulas [14], and implicit Runge Kuttas
. [12].

’?.
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